Cuadrado geométrico [editar]
En geometría euclidiana, un cuadrado es un cuadrilátero que tiene sus lados opuestos paralelos y, por tanto, es un paralelogramo. Dado que sus cuatro ángulos internos son rectos, es también un caso especial de rectángulo. De modo similar, al tener los cuatro lados iguales, es un caso especial de rombo. Cada ángulo interno de un cuadrado mide 90 grados ó π / 2 radianes, y la suma de todos ellos es 360º ó 2π radianes. Cada ángulo externo del cuadrado mide 270º ó 3π / 2 radianes.
Ecuaciones y elementos [editar]
Si un cuadrado C tiene lados que miden L, entonces, el perímetro es igual a 4L, pues los cuatro lados son iguales.
La longitud de la diagonal se puede calcular mediante el Teorema de Pitágoras, la cual será igual a:
El área de un cuadrado se determina mediante la siguiente ecuación:
Siendo A el área y L el lado.
Si inscribimos un círculo en un cuadrado de lado L, el radio será la mitad del lado: r = L/2. El área de dicho círculo es: π/4 ≈ 0,785 veces el área del cuadrado.
Por otro lado, si consideramos un círculo circunscrito, el radio será la mitad de la diagonal, y el área del círculo será: π/2 ≈ 1,57 veces el área del cuadrado.
No hay comentarios:
Publicar un comentario